
D-A152 665 AUTOMATIC DIS TRIBUTION OF PROGRAMS IN MASCOT AND ADA 1/1
(TRADEMARK) ENVIRONM .(U) ROYAL SIGNALS AND RADAR

U CLRESTABLISHMENT MALVERN (ENGLAND) G FICKENSCHER NOY 94
UNCLASSIFIED .RSRE-MENO-3696 DR C-BR-946 i F/ 91 NL

MEl.

1-0 28 2-

1*1~~1 8'Ijj.

fl1*25 1*__ 4 6

UNLIMITED D)4681

RSRE
MEMORANDUM No. 3696

ROYAL SIGNALS & RADAR
ESTABLISHMENT

Lfl

AUTOMATIC DISTRIBUTION OF PROGRAMS IN MASCOT
AND Ada ENVIRONMENTS - A FEASIBILITY STUDY

Author: Gustav Fickenscher

ct

0 PROCUREMENT EXECUTIVE,
MINISTRY OF DEFENCE,

RSRE MALVERN,
WORCS.

t-II ELECTEn:-,:-.-.

0 & APR 23 1985•
0

E

me UNLIMITEDP 5 4 22 086

UNLIM1ITED
ROYAL SIGNALS AND RADAR ESTABLISHMENT

Memorandum 3696

TITLE: AUTOMATIC DISTRIBUTION OF PROGRAMS IN MASCOT AND Ada *
ENVIRONMENTS - A FEASIBILITY STUDY

Author: Gustav Fickenscher

Date: November 1984 0

SUMMARY

Recent years have seen a steady increase of computer systems based
on distributed hardware. This is made possible by the reduction of
hardware costs and increases in the power of hardware components.
More sophisticated software systems are the result. To reduce the .
costs for software development it would be advantageous to reuse
software systems in different target environments. In the case of
distributed systems this means that software may be distributed
differently in different environments. It would simplify matters
if the software could be distributed automatically. In this paper
the feasibility of automatic distribution of Ada programs and .

MASCOT-like programs is investigated. The impacts of the distribution
on the runtime environment and communication system are outlined..,.

Accession For

NTIS CRA&I
DTIC TAB
Uniannounced
Just if icntlom

By -- ______

ooc Av 4 >1t'v Coclos

QUALITYiSPECTED Dist S,

This memorandum is for advance information. It is not necessarily to be ..
regarded as a final or official statement by Procurement Executive, Ministry
of Defence

Copyright
C

Controller HMSO London

1984-

• Ada is a registered trademark of the US Government, Ada Joint

Progress Office.

p."0

CONTENTS

1. Introduction 1
2. The Hardware Environment 2

2.1 Range of Distributed Systems 2 -

2.2 Essential Hardware Elements 3 0
2.3 Description Method 4

3. The Distribution of Application Programs 7
3.1 Distributable Parts of MASCOT-like Programs 7

3.1.1 Inter-Communication Data Areas 7
3.1.2 Activities 8 -

3.1.3 Subsystems 9 6
3.1.4 Library Routines 10

3.2 Distributable Parts of Ada Programs 10
3.2.1 Visibility and Scope of Declarations 10

3.2.1.1 Object Declarations 11
3.2.1.2 Type Declarations 12
3.2.1.3 Block Statements 12 .0

3.2.1.4 Subprograms 13
3.2.1.5 Packages 14
3.2.1.6 Generic Declarations 16
3.2.1.7 Generic Instantiations 16

3.2.1.8 Tasks 16
3.2.1.9 Scope Hierarchy and Relations between Scopes 17

3.2.2 Subunits 19
3.2.3 Library Units 19 -

3.2.4 Dynamic Creation of Task Objects 20
3.2.5 Input-Output 21 -:

3.3 The Distribution Process 21
3.3.1 Requirements and Strategies 21 -

3.3.2 MASCOT-like Programs 22

3.3.3 Ada Programs 23
3.3.4 MASCOT/Ada Programs 23

4. Communication 24
4.1 Communication Mechanisms 24

4.1.1 Message Passing 24 0
4.1.2 Remote Invocation 25
4.1.3 Paired Input/Output Statements 25

4.2 Communication in MASCOT-like Systems 26
4.2.1 Invocation of Access Procedures 26
4.2.2 Problems of Remote Invocation of Access Procedures 27 "

4.2.2.1 Parameters of Access Procedures 27
4.2.2.2 Communication Problems 28
4.2.2.3 MASCOT Primitives 29 .. -"

4.2.3 Solution for MASCOT-like Systems 30
4.3 Communication in Ada Systems 30

4.3.1 Global Objects 30
4.3.2 Subprogram Calls 31 .
4.3.3 Entry Calls 31

4.4 The Communication Protocol 32

5. The Runtime Environment and Associated Tools 33
5. 1 Ada Programs 33
5.2 MASCOT-like Programs 34

6. Conclusion 36 -

i: i Li

7. Acknowledgements 37
8. References 37. ..-

0

. .

-o

a

S

• i

1. Introduction

Recent years have seen a steady increase of computer systems based on

distributed hardware. Such systems offer greater availability and greater
reliability because of built-in hardware and possibly software redundancies.

The software involved is mainly tailored to the particular system. Therefore

hardware changes normally imply major changes, eventually even redesigns of

software components, or, even worse, a new development of the whole software.
Nowadays, it is acknowledged by most people in the computer business, that the
software system is the more expensive part of a computer system. The

application system should be as hardware independent as possible and its design

should not be constrained by target hardware but should only be based on

software criteria. The final distribution of the application system onto the

various hardware components should more or less be performed automatically.

Such an approach would allow hardware changes leaving the software system almost

unaffected. Ideally, the application system should not have any knowledge of
the hardware it is running on.

If design and implementation of software are to be made independent of the

target hardware, some questions need to be resolved leading to an automatic

distribution process:

- In what way is a distributed target environment to be described?

- In what way can an application system be partitioned and how can the

resulting parts be distributed?

- How is an efficient means of communication achieved between the

distributed parts?

- To what extent are compilers, linkage editors, and loaders affected?

- What are the requirements for an underlying runtime system? .

Ideally these questions should be solved independently of particular design

methodologies and implementation languages, because they are of general
interest. However, this paper restricts itself to MASCOT [2] and Ada [1]. 1
The clear design guidelines of MASCOT ease the distribution process. Ada, on
the other hand, seems to complicate the problem with its special tasking and
package concepts and its visibility rules.

This paper contains a description of the problems involved in mapping concurrent

software onto distributed hardware environments excluding the trivial
possibility of purely manual distribution. The feasibility of several

alternatives is examined. Solutions to the problems (in particular, a
description of possible implementations) is beyond the scope of this paper.

• S ., .

"S ;:

-1- .

SV-• Y-71

2. The Hardware Environment

The main goals, which are to be achieved with distributed systems, are increases
of reliability, modularity, expandability, and adaptability of computer systems.
A secondary goal, which seems to be obvious, is an increase of computing power
and speed. However, the necessary communication between various parts of the
system also increases and tends to degrade the performance of the system.
Therefore the goals can only be achieved by

an efficient distribution of the hardware components with respect to the -
requirements for reliability, modularity, and expandability

and by

an efficient distribution of the software components with respect to a
minimization of the necessary communication.

The distribution of hardware components may impose restrictions on the
distribution of software components and vice versa.

The distribution of hardware is well understood, but there is little
understanding of efficient software distribution and no sound theory exists.
Software systems are normally tailored to specific hardware structures. This
approach neglects the fact that changes of hardware components happen quite
often, which then result in software changes or even partial redesign of the
software system. It is now commonly recognised that software components are the
more expensive parts in computer systems. Software changes should therefore be
kept to a minimum. A system which distributes a hardware independent
application program onto a formally described distributed environment would be
the best solution. To achieve this goal, it must be clear:

what range of target environments is relevant (i.e. the term "distributed

system" must be defined),

what the essential elements of distributed systems are (with respect to the
problem of distributing a software system), and

how such a distributed hardware system can be described formally.

This paper is primarily concerned with distributed systems in real-time
environments. Such systems should be able to react to external events rather
quickly. Therefore the work load should be equally distributed over the whole
system.

2.1 Range of Distributed Systems

A distributed system can roughly be described as a network whose nodes are

processing units, memory units, peripheral units, etc., and whose edges are the
necessary communication links between the various nodes. Not every node has to
be linked to every other node in the network. However, computers, which are not
classed as distributed systems, are composed from peripherals, i/o processors,
memory units, etc. Such a definition is therefore not precise enough. ..

To distinguish distributed systems from other systems, the terms "multi-computer •
system" and "multi-processor system" used to be widely used to describe the

-2-

architecture of distributed environments. They are, however, not of any help,
because distributed systems incorporate both kinds of architecture, and because
even "normal" computer systems consist of more than one processor (or even
computer) nowadays.

A better definition of the term "distributed system" is given in [6]:

A distributed system consists of a collection of highly autonomous nodes,
with each node containing a processor (perhaps processors), primary
storage, (perhaps) secondary storage, and a means whereby a node may
communicate with its environment (e.g. terminals). 0

Nodes are connected together and communicate via a communication network
which exhibits variable (and perhaps unreliable) delays in the transfer of
information from node to node.

This definition is sufficiently general to include both, distributed systems
which consist of an homogeneous collection of processor nodes, each operating
under control of a replicated but common operating system, and a variety of
networks which may contain passive nodes as well as active nodes.

Note that the definition

(a) does not allow the inclusion of common memories (accessible at
instruction level by several node processors), and

(b) implies the use (as the various nodes are highly autonomous) of
distributed (rather than centralized) mechanisms for synchronization
and co-operation.

The latter two features distinguish a distributed system from the more classic
multi-processor system. The term "multi-computer system" is also excluded,
because it implies the possibility of "master computers" controlling "slave
computers" and therefore parts of the system or even the whole system.

Additionally the definition does not characterize (and hence not restrict) the
class of applications for which a distributed system might be employed.

In summary, viewing distributed systems as collections of nearly autonomous
nodes generally implies that one node may request service or information from
another node, but that no node may completely explicitly control the behaviour
of another. This further implies that a node cannot (in normal conditions) work
stand-alone, because it needs information from other nodes in the system to
fulfill its tasks. A distributed system (seen as a "black box") behaves to its
environment like a "normal" computer system.

2.2 Essential Hardware Elements

Whether a hardware element of a distributed system is essential or not, depends

on the purpose of the distributed system and on the person who at the moment S

deals with the system. This paper is only concerned with the task of
distributing a given software system onto a given distributed hardware system.
The distribution which will minimize the load on the necessary communication
links between distributed hardware components and will maximize the parallelism -" ""
of processes (Activities in MASCOT; tasks in Ada) hosted by the nodes is to be
done automatically. Restrictions might be imposed by peripherals which are

-3- .- -

connected to particular (processing) units (nodes of the network) only.
Therefore only those hardware elements of a system are essential, which affect
the distribution process. Further restrictions might be imposed by the
characteristics of underlying runtime environments and the implementation
language (i.e. the use of global objects in an Ada program). Restrictions S
caused by software are dealt with in the remainder of this paper.

The definitions given in subchapter 2.1 mention two major components of
distributed systems: nodes, which host the computing power of the system, and
links between the nodes, which establish a communication network within the -"-

system. It must therefore be assumed that these elements are essential. They 0
would be sufficient for a distribution process, if every node had an unlimited
size of main memory to store the programs running on it, had unrestricted access
to all devices which are used to communicate with the system's environment, and
were fast enough to process its data in realtime. In practice, nodes will have
a limited computing speed, a limited size of main memory and will only have
unrestricted access to those devices directly attached to them. Nevertheless, 0
the distribution process is mainly guided by the number of nodes and of
communication links. Decisions must take account of various restrictions.
Restrictions therefore are attributes of nodes and communication links. An
implementation of the distribution process may define any number of attributes
with respect to special requirements.

In the remainder of this paper it is assumed that nodes consist of one processor
only. The assumption is valid, because this paper only tries to solve the
problems which result from synchronization of different nodes. The
synchronization problems within a particular node must be resolved by the
respective operating system. Routines of this operating system which handle the
communication between nodes are common to all processors in the node. It is
also assumed that all communication links between nodes work bidirectional.

As far as the problem of distributing a given software system onto a formally
described distributed hardware environment is concerned there are two essential
components of the hardware system: nodes and communication links between nodes.
Both components have attributes which describe the limited nature of the nodes -.-

and the communication links. The use made of the information depends on the
implementation of the distribution process.

2.3 Description Method

To be able to distribute a given software system onto a particular hardware
system automatically, the hardware system should be described formally. The
description is one input to the distribution process.

Every essential hardware element of the distributed system is identified by its
type. The distributed system is represented by a graph. The nodes of the graph
are the nodes of the distributed system. The edges of the graph are the
bidirectional communication links. Nodes and edges have attributes which carry
further information.

Possible node attributes are:

- number and type of processors

- size of main memory

4-

- performance (i.e. processing speed)

- special memory locations (interrupt addresses, etc.)

- attached devices S

Possible attributes of the communication links are:

- transfer rate

- type of link (serial, parallel) 0

The various attributes subdivide into mandatory and optional attributes. An
implementation will define the appropriate attributes in both lists. The number
and type of devices attached to a particular node seem to be mandatory
attributes. However, a particular system may allow every node to have access to

every device of the system by using a special communication network.

The following data types can be used to describe the various hardware components
of the distributed system. The number, type, and value of attributes are
implementation dependent. The type and value of "node.identification" and
"interconnection.identification" also are implementation dependent and should
state the unique system name of the particular node or of the particular
communication link respectively.

TYPE attribute IS -- implementation-defined;
TYPE attributelistitem;
TYPE access attribute list IS ACCESS attribute list item;
TYPE attribute list item IS

RECORD
item : attribute;
next : access attribute list;

END RECORD; .

TYPE node;
TYPE accessnode IS ACCESS node;

TYPE interconnection;
TYPE accessinterconnection IS ACCESS interconnection;

TYPE interconnection list-item;
TYPE accessinterconnection-list IS ACCESS interconnection list item;
TYPE interconnectionlistitem IS

RECORD
item : accessinterconnection;
next : access-interconnection list;

END RECORD;

-5-

TYPE node IS
RECORD

identification -- implementationdefined;
list of attributes : accessattributelist;
list of interconnections : access interconnection list;

END RECORD;

TYPE interconnection IS
RECORD

identification -- implementationdefined;

list of attributes : accessattributelist;
node I : access node;
node_2 : access-node;

END RECORD;

The hardware of a particular distributed system is represented by a list of

nodes and a list of edges ("interconnections"). The actual structure of the
lists is left to the particular implementation.

S .

S -

-6- 5-

. ..-. -. . . . ' 2" . - - - - . . 7 7 " .- - . -- -

3. The Distribution of Application Programs

It is obvious that a distribution process needs a proper representation of the
software to be distributed as well as the formal description of the hardware S

environment. The distribution process decides on the basis of both inputs how
to split the application program into proper parts. However, before the

distribution process itself can be defined, the distributable parts of an
application program must be determined. Application programs developed
according to MASCOT are discussed first. The problems involved in splitting an
Ada program are dealt with afterwards.

3.1 Distributable Parts of MASCOT-like rrograms

The MASCOT philosophy clearly defines the parts that an application program is

built from: Activities and Inter-Communication Data Areas (IDAs) . In theory
Activities and IDAs are totally independent from other Activities and IDAs. The
implementation of Activities or IDAs can be replaced by another implementation
without affecLing the construction of the application program, as long as the
respective interfaces are left unchanged. To ease the design of larger 0
application systems, logically closely related Activities and IDAs can be
conceptually grouped together to form Subsystems. Therefore Subsystems too are
to be considered as distributable parts. Moreover, in contrast to Activities,
which are the subjects being scheduled by the runtime executive of a MASCOT
Machine, Subsystems can be started, halted, resumed, and terminated by
respective user actions during runtime (refer [2 3). S

Before concluding, how the parts of MASCOT-like application systems should be

distributed, the characteristics of MASCOT units are discussed and their impacts
on the distribution process outlined. Advantages and disadvantages are stated.
Additionally, the impact of library units (i.e. pieces of software which are
used by more than one Activity, etc.) is investigated. .0

MASCOT Device Handlers are not considered to be distributable parts, because
they are closely interrelated with specific peripheral devices attached to
particular nodes. They must therefore be loaded into the respective nodes, and
that may constrain the distribution of other parts.

3.1.1 Inter-Communication Data Areas

Inter-Communication Data Areas serve as communication interfaces between -

Activities. Because Activities execute in parallel, their access to IDAs must
be synchronized to ensure the integrity and consistency of the application
system. MASCOT defines the synchronization mechanisms as part of the IDAs. The
mechanisms are based on an asynchronous model, which is very helpful as far as
distributed systems are concerned. IDAs are passive elements. Their execution
is only triggered by Activities which want to use them. IDAs consist of a data -
area and access procedures to this data area. The access procedures implement
mutual exclusion of those Activities which compete for access to the data area.
The IDAs must be treated very carefully, because they influence the distributed
synchronization mechanisms. Their location in the network must be chosen to
keep the network-wide needs for synchronization to an absolute minimum.

0

- 7--L-":

ecause IDAs are the passive elements, their distribution should be considered
fter the distribution of the active elements. Their location in the
nvironment should be determined with respect to efficiency. Before the final
ocation of an IDA is determined, the following options should be resolved: 0

the IDA can be loaded in the same node as the Activity which calls the IDA
most often;

the IDA can be loaded in the same node as the Activity which is the
consumer (or producer) of messages sent through it;

the IDA can be loaded in the same node as the Activity which must be served
without any delay if it accesses the IDA;

the IDA can be loaded in the same node as the majority of those Activities
using it; 0

the IDA can be loaded in such a way that the overall response time in
accessing it is minimized throughout the network.

't may be necessary that IDAs must be redistributed following results of initial
.est runs, because the system has performed badly. This is possible, because 0

listribution process makes its decisions on static assumptions. Dynamic
derations can be achieved by simulating the behaviour of the application

ystem with respect to the workload of the IDAs, taking the result of the
listribution process as a first input. An investigation, to decide whether
simulation or test runs with the newly built system is the better approach, is
)eyond the scope of this paper, because both a working distribution system and a .
)roper simulation system are needed to provide necessary data on which to base a
,onclusion.

3.1.2 Activities 0

kctivities are the active elements in MASCOT-like application systems. An aim
)f a distribution process should therefore be to maximize parallelism in the
;xecution of the Activities. That means that every node of the distributed
environment should always have an Activity in the running state. Ideally the 0
iumber of idle nodes should be zero.

distributed system is represented by a graph (refer 2.). Its active elements

:e.g. processors) are the nodes of the graph, its passive elements (e.g. links
)etween processors) the edges. A MASCOT-like application system is described by
in ACP Diagram which is a graph with Activities and IDAs as nodes and links
)etween Activities and IDAs as its edges. It is possible to transform an ACP
)iagram into another graph showing Activities as its nodes and the connections
)etween Activities via IDAs as its edges. IDAs themselves do not appear in this
Iraph. The task of the distribution process is to reduce this graph to a graph
ihich is equivalent to the graph representing the distributed system. The
•eduction, however, must maintain a maximum of parallelism between Activities _
ind must ensure a minimum of communication between the nodes of the distributed
system. Therefore it must be aware of the IDAs through which the various
kctivities communicate and it must distribute the IDAs accordingly.

kn Activity is implemented by a reasonably small piece of code. The resulting
:ode quantity can therefore be distributed in such a manner, that the amount of 0
inused space of the main memories of the various nodes is minimized.

IIi I iI IIIn~ i i~I ~ I -8-'"

lication program is distributed in such a way that only one process of a node
municates with only one process of another node. This approach, however, may
n that highly competitive processes reside in the same node.

ther approach is feasible. Moreover, the locations of processes may be fixed
their needs to communicate with the system's environment through devices
ached to particular nodes. Therefore the following strategy is recommended.

(1) Recognise the processes whose locations are fixed by their needs to
communicate with devices attached to particular nodes and distribute
them accordingly.

(2) Determine the communication requirements of these processes with other
processes and distribute the latter to achieve a minimum of load of the
communication network. The distribution may be constrained by the use
of global data, subprograms, etc. 0

result of the distribution process should be treated as a recommendation
ch must be approved by the development engineer. The final distribution
,uld be made according to results of test runs, because inefficiencies caused
the communication requirements cannot be found statically.

.2 MASCOT-like Programs

;raph-like representation of MASCOT-like programs is maintained by the MASCOT
istruction Data Base. The representation is equivalent to the ACP Diagram of
program on the uppermost level. Additionally, it shows from what templates

.ivities and IDAs are derived.

is recommended to take Activities as the basis for the distribution of
COT-like application programs. The disadvantage which occurs in addressing
)systems is minor, because the distribution process will put closely related
.ivities (normally those of a Subsystem) together in the same node. The
vantage gained is a better and more suitable distribution of the whole
)gram.

ks should be loaded in the same node as those Activities which access them 0
;t to minimize the load of the communication network. However, a particular
)lementation may choose another approach or leave it flexible so that the
,tem's constructor can choose the strategy interactively.

distribution process should be supplied manually (probably interactively
;er it has made initial decisions) with some guidelines for the distribution

special objects.

the MASCOT Machine an application program runs on is an Evolutionary Machine,
.omatic distribution of the application program is not feasible, since the
>gram may change online. The location of the various program parts must
!refore be specified by the system's constructor. S

22

- 22 -

3.2.5 Input-Output

To allow a program to communicate with its environment, Ada provides a set of
input/output packages (refer [1]). These packages must be loaded in those 0

nodes, to which the particular external devices are connected. The code of the
input/output packages can be duplicated as often as there are different devices
attached to the system. The distribution of the program units referring to
particular input/output packages is constrained by the location of the packages.

If special input/output routines are used in an application system, these •
routines should be embedded in special packages for each device. Such an

approach eases the distribution.

3.3 The Distribution Process •

Basically the task of the distribution process is to reduce a proper graph
representation of an application program (the ACP Diagram in the case of a

MASCOT-like program; the scope tree with its use and call relationships in the
case of an Ada program) to the graph representation of the distributed hardware .
environment. The methods of graph reductions are many and are not presented in
this paper.

An actual implementation of the distribution process must be based on adjustable
distribution requirements and strategies. The distribution of an application
program is further constrained by its input/output needs. •

The results of the distribution process are inputs for the code generation phase
of compilers, for linkage editors, and perhaps for loaders of the distributed
environment.

3.3.1 Requirements and Strategies

The distribution process is mainly confronted with two conflicting requirements:

(1) minimization of the load of the communication network, and

(2) maximization of the parallelism of processes (Activities in MASCOT;
tasks in Ada).

Both requirements are essentially to achieve a behaviour of the distributed
system which suits a realtime environment where a low response time to external
(and also internal) events is disastrous. Decreasing the load on the

communication network and increasing on parallelism of processes improves
response time.

A maximum of parallelism can be achieved by allocating each process to a node of

the distributed environment. This is, however, impossible, especially if an Ada

program is considered where the number of actually created tasks cannot be

determined statically. Additionally, a huge number of nodes would be required,
of which at a given time most would be idle.

A minimum of load of the communication network can be achieved, if the

-21-

.2.4 Dynamic Creation of Task Objects

ask objects are special objects in Ada: a fact which complicates the.S
istribution process. Tasks are not the units of which an Ada program is
:onstructed. The structural components of an Ada program are subprograms and
)ackages (library units in a more common sense). Tasks are declarative items
ithin library units. They can be declared wherever a declarative part is
illowed. Nevertheless they are program units and define a sequence of actions.
'ask objects come into existence when the respective program unit or block S
tatement starts to execute its sequence of statements. A task object ceases to
xist before the respective program unit or block statement, in which the type
)f the task object is declared, terminates the execution of its sequence of
;tatements. Task objects can even be created dynamically by the elaboration of
illocators, if they are derived from task access types. Ada does not restrict
;he creation of task objects in any way. Therefore it is not predictable from a •
;tatic point of view, how many task objects will exist during the runtime of an
kda program. This kind of flexibility is not helpful to the distribution of Ada
)rograms. However, to allow for the full power of the Ada language,
•estrictions should not be put on programmers by a distribution process.

[he declaration of a task type consists of two parts: the declaration of its 0
Lnterfaces (entries), which define means by which a derived task object can
,ommunicate with other task objects in a controlled manner, and the declaration
)f its body, which defines the sequence of actions (code) a derived task object
iill perform. The body of a task type is reentrant, a fact that can be utilized
)y a distribution process. It allows that the code of a task type can be
iuplicated within the distributed environment. Problems arise, if the task body . S
ises global objects. The use of global subprograms is not critical. These
subprograms are unable to use objects of the task body. Therefore control can
)e transferred to them, even if they are located in another node of the
?nvironment. On the other hand, if a referenced subprogram only uses local
ieclarative items, its code can be duplicated and loaded in the node the task
)bject runs on.

task objects can be declared within a task body. A distribution process should
'reat them as being declared on the same level as the parent task. Only their
Life time is constrained by the parent task.

If tasks are components of record objects or array objects, they start to live S
Lmmediately after the elaboration of the respective record object or array
)bject.

k distribution process can only work on static terms despite the fact, that the
Lives of Ada tasks rely on dynamic terms. Therefore it can only take the number
)f task types, the number of task objects of anonymous task types, and the S
lumber and occurrences of task object declarations and of allocators as base for
i distribution. If several tasks are created consecutively by the same " .
leclaration or allocator due to runtime behaviour, the resulting task objects
should be located in the same node of the distributed environment. In the case
)f task access types, the task objects must be located in the node in which the
)rogram unit resides in which the respective type has been declared.

Ihe distribution of a task is restricted, if one of its entries is connected to
a hardware interrupt.

20 "

either transfers control to a subprogram by issuing an appropriate

subprogram call or wants to rendezvous with a task object by issuing an
appropriate entry call. In either case a program unit only uses an
interface of another unit. Call relationships therefore denote direct

communication paths between different parts of application programs. S

If the called program unit is declared within a package declaration, a
use relationship is automatically established between the calling unit
and the respective package declaration.

The various use relationships form a dependency graph of an application system.
It is obvious that the graph consists of several unconnected subgraphs, called 0

relationship graphs. These relationship graphs denote disjoint scope areas of
the application program, i.e. parts of the Ada program which are totally
independent from each other, apart from call relationships or from the
initiation of task objects which actually establish these scope areas.

The disjoint relationship graphs determine the distributable parts of an S

application program. The distribution may only be constrained by call
relationships which represent subprogram calls, if the addressed subprograms use
global items (refer 3.2.1.4).

0

3.2.2 Subunits

The declaration of subprograms, packages, and tasks can specify that the
associated bodies are to be compiled separatly. The program units are then
called subunits. The program units containing the declarations are called -0
parent units. A subunit is effectively part of its parent unit and must mention
its parent unit. The language facility only eases compilation. The
distribution process must consider a parent unit together with its subunits.

Subunits, however, may import library units in a context clause. These library

units have to be considered additionally. .0

3.2.3 Library Units

Subprograms, packages, and generic declarations and their bodies as well as
generic instantiations can be compiled on their own. These units (except their
bodies) are called library units in Ada. Bodies can only be compiled after
successfull compilation of the respective subprogram specification, generic
declaration or package declaration.

Library units can import other library units (i.e. make the respective interface
visible). In this case library units depend on other library units. Because of
recompilation restrictions (refer [1)) an Ada compiler builds a dependency
graph which represents the visibility connections between library units.

The distribution process builds a scope tree for every library unit. The
dependency graph of the library units is used to connect the various scope trees
and to form the relationships between the various nodes of the scope tree.

The resulting disjoint relationship graphs determine the distributable parts of
the overall program.

- 19-

0

: subprogram declaration :

I . V "0------------ >>>>>>>>>>>>>>>>>>>>>V--"""

V<<<<< I subprogram body 1 V ..- ''

V VV I

v
V

: subprogram body .. package body i V
--------------------------------- V: V

VV

* I I
V---------------------------

------------ >>>>>>>>>> subprogram declaration ',-. .
task declaration ---- ---- --- ---- ---- ---

--- -------- -------
,: :.,subprogram body ,pka bodyV

V V
----- V--- ------------------------------

task declarations ga

task body - - - - --. -task-declarao >>> call relationship '

... use relationship

Figure 3.2-6 :Scope Tree and Relationship Graphs

Nodes of the scope tree may contain two types of relationships to other nodes:

(1) use relationship

A use relationship is established between two program units, if one of •...
the units uses objects or types declared in the other unit. Use

relationships constrain the distributability of application programs.
They also denote possible indirect communication paths between parts of
application programs.

(2) call relationship

A call relationship denotes, whether a program unit or block statement

u18- relationship

Fiur 3.- Scop Tree and Relationshipmmmm Graph

declared in its enclosing scope. If it does so, these objects may be shared by
several tasks and are not protected from competing accesses, unless the access
to them is put in critical regions.

A task starts its execution at the point where its immediately enclosing program

unit commences to execute its sequence of statements or, in the case of a task
access object, after evaluation of the respective allocator. A task object will

end its execution and will be destroyed afterwards when the scope of the program
unit is left in which its type is declared. However, the enclosing program unit
must wait until the task has finished to execute its sequence of statements.

0

Task objects form the basis for the distribution process, because they are the
only active elements in an Ada program. If an Ada program does not contain

tasks, it is not distributable. The procedure which denotes the main program is
treated like a task object. Because the existence of tasks depends on the
execution of the particular Ada program, the distribution process has to
evaluate the whole program to determine the number of task type and task object
declarations. After this computation the splitting of the Ada program is done
according to its scope hierarchy.

enclosing unit - ------------

1 enclosing unit
---------------- -------------------- I
I task declaration

=> t l task declaration
------------ --------------------- I

Itask body dlao.

S ------------ ----------

t b task body b

Figure 3.2-5 : Transformation Rule for Tasks b-- ------- - - - - - - - - - - - -- - - - - - - - - - - - -

3.2.1.9 Scope Hierarchy and Relations between Scopes

An Ada program establishes a hierarchy of scopes, which can be represented by a
tree structure (scope tree). Every node of the tree represents either the

interface (VOID in case of a block statement) or the scope of a subprogram, _
package, task, or block statement (refer to the transformation rules shown by
Figures 3.2-1 to 3.2-5). An example of a scope tree is shown by Figure 3.2-5.

-17-

and because a package is only elaborated once in an application program due to
language rules, the code of a package body can only exist once in a distributed
environment.

0
The transformation rule is shown by Figure 3.2-4. All possible transformations
are demonstrated.

3.2.1.6 Generic Declarations

A generic aeclaration effectively specifies a template either for a set of
subprograms or for a set of packages.

A generic unit is written as a subprogram or package but with the specification
prefixed by a generic formal part which may declare generic formal parameters.
A generic formal parameter is either a type, a subprogram, or an object.

Generic units are not considered by the distribution process.

3.2.1.7 Generic Instantiations

A subprogram or package created using a template is called an instance of the
generic unit. A generic instantiation is the kind of declaration that creates
an instance.

Instances of generic units are treated as packages or subprograms respectively
by the distribution process.

3.2.1.8 Tasks

A task operates in parallel with other parts of the program. It is written as a

task specification (specifying the name of the task and the names and formal @
parameters of its entries) and a task body which defines its execution.

A task type is a type that permits the subsequent declaration of any number of
similar tasks of the type. A value of a task type (task object) is said to
designate a task. A task object which is not derived from a task type is said
to be of an anonymous type specified at the point of the task declaration.
Access types of task types are also possible. Tasks can be part of compound
objects (record objects, array objects).

Task entries define the interfaces which allow the passing of messages between
tasks. They are points of synchronization of task objects. The message
handling is based on a synchronous model. The interested reader is referred to _

1 1 J for more information.

A task body may contain a declarative part. All items declared therein are
hidden from outside the task body. Therefore the declarative part establishes a
new level in the scope hierarchy of an Ada program. This scope is a leaf of the
node representing the scope of the declarative part where the respoctive task
type is declared in (refer Figure 3.2-5). A task body may refer to items ..- >:

- 16- .

